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ABSTRACT

Under normael flight test conditions, it has been known that there
is an error in measuring the pilot describing function due to a correla-
tion of the input error signal with the pilot's output noise. It is
shown in this paper that this measurement error can be reduced by shift-
ing the input signal during the computer processing. The input signal
is shifted by an amount equivalent to the pilot's time delay. This
technique is based on a theoretical development which considers the fact
that the measurement is constrained to only identify physically realiz-
able systems. The simulation and identification of an example pilot
model is included in this study to illustrate this technique. Also,
representative data from the retrofire phase of the Gemini X flight have
been analyzed and are presented to demonstrate the feasibility of using
this technique with normal spacecraft operating records.

INTRODUCTION

Pilot describing functions have usually been identified from records
obtained in ground-based simulators and flight tests wherein carefully
controlled external forcing functions (i.e., sine waves) are used to
excite the pilot vehicle system. In these analyses, the pilot's output
and input are compared with the known forcing function in order to reduce
errors in identification due to any correlation of the input error signal
with the pilot's output noise. Reference 1 contains a good review of
this previous work and summarizes the pilot describing functions measured
for a variety of vehicle and control system dynamics.

Some methods proposed for pilot describing functions identification
use flight test data wherein only random external disturbances (i.e.,
aerodynamic turbulence, propulsive disturbance, etc.) excite the pilot
vehicle system. These are the so-called open-loop methods vwhich compute
the pilots describing function directly from the pilots input and output
signals. In reference 2, these methods have been reviewed and the
expected errors in identification have been analyzed. It was shown that
there is a measurement error when using these open-loop methods due to
the fact that the pilot's output noise is transferred through the control
loop, appearing as a component of his input error signal, and thus is
correlated with his input. It was further shown that if the pilots
noise was large, as compared with the external disturbance, then the
measurement error would probably be unacceptable.

During normal flight test operations there are usually no carefully
controlled forcing functions and even the random external disturbance
may be quite small. The purpose of this report is to present the develop-
ment of a technique to reduce the error in measuring the pilot describing
functions for these normal flight test operations. A brief theoretical
development of this technique is included in the appendix. This technique
involves shifting the time history of the input error signal during the
computer processing. The input signal is shifted an amount equivalent
to the pilot's time delay. As shown in the appendix, this technique could
conceivably be used with any open-loop method which is constrained to only

2




identify physically realizable systems. For the purposes of this
report, this technique will be applied with two representative identi-
fication methods; cross-correlation (refs. 2 and 3) and orthogonal fil-
ters (refs. 2 and 4). Although previous studies (e.g., refs. 4 and 5)
have considered the use of a time delay in the measurement of pilot
describing functions, it was apparently not observed that this time
delay would strongly influence the errors in identification.

In this paper, this technique of reducing measurement errors will
be illustrated through the simulation and identification of a known sys-
tem. This technique will also be applied to data recorded during the
Gemini X flight. These results will serve to demonstrate the application
of this technique for measuring the pilot describing functions using
actual flight test records.

NOMENCLATURE
c(t) controller deflection (output of pilot)
e(t) error signal (input to pilot)
i(t) external disturbance
n(t) pilot noise
Ryn(T) autocorrelation function of n(t)
t time, sec

Yo (gw) controlled element

Yp( jw) pilot transfer function

?b(jw) measured pilot transfer function

a exponential decay factor, sec™?1

A pure time delay used during analysis, sec
To pure time delay in Y., sec

™ pure time delay in Yp, sec

®ee(w) power spectrum of e(t)

$n(w) power spectrum of n(t)

®ec(jw)  cross-power spectrum of e(t) and c(t)




| ®en(jw) cross-power spectrum of e(t) and n(t)
W frequency, rad/sec
MEASUREMENT ERROR WITH OPEN-LOOP IDENTIFICATION METHODS

Measuring pilot describing functions with open-loop identification
methods is illustrated in the upper portion of figure 1. In order to

CONTROLLED
ELEMENT
Ye
MEASUREMENT
Yo
CASE1l i>>n
?p(iw) * Ypliw)
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Figure 1.- Measurement of describing functions with open-loop
identification methods.

determine the unknown describing function, Yp(jw), there must be some
signal within the control loop. This signal could be the result of the
disturbance source, i(t), or the noise introduced by the pilot n(t).
Although 1i(t) is shown in figure 1 as a time-varying command, it can
also be considered (through block diagram reduction) to contain any
other type of disturbance such as aerodynamics, propulsion, etc., which
is external to the pilot. The pilot is assumed to be in a compensatory
tracking task trying to control his output c¢(t) in such a menner as to
keep the error signal e(t) near zero.

In measuring the pilot's describing function using these types of
open-loop methods, previous studies (e.g., refs. 2 and 6) have shown
that there is a difference between the measured describing function
Yp(jw) and the actual describing function Yp(jw) due to a correlation
of e(t) with n(t). This can be shown using cross-spectral relationships
for the estimated describing function.

T, (30) = (1)



where @go(Jw) is the cross-power spectrum between e(t) and c(t) and
®ee(w) is the power density spectrum of e(t). If basic relationships
are used for the closed loop system in figure 1, the cross-product can
be written as the sum Qgo(Jw) = Yp(Jw) dee(jw) + Gen(jw). Substituting
this into equation (1), we then obtain

Pep (Jw)
¢ée(w)
error

Yo(gw) = Yp(gu) + (2)

It can be seen that any correlation, @gn(jw), between e(t) and n(t) can
contribute an error when open-loop identification methods are used. The
amount of this error derived in the previous studies is illustrated on
the lower portion of figure 1. For case I where i(t) is much larger
than n(t) it has been shown that the measured describing function
Yp(jw) will be near the true value Yp(jw). However, for case II in
which n(t) is much larger than i(t), it has been shown that the mea-
sured describing function will be very much in error, and, in fact, the
identification methods will measure?l Yp(jw)fw —l/Yc(jw)-

THE USE OF A TIME DELAY, A, TO REDUCE MEASUREMENT ERRORS

Because for normel flight test conditions n(t) may be large compared
to i(t), it is necessary to find some means of reducing the large error
indicated in case II sbove. The theoretical development of such a tech-
nique is described in the appendix. This development considers the fact
that in using time-domain identification methods, the measurement is con-
strained to be physically realizable. It also considers the fact that
the pilot describing function is characterized by a time delay, Tp: It
is shown in the appendix that delaying the input data (see upper portion
of fig. 2) by an amount A, where A S Tp, will reduce the measurement
error.

The results from the appendix are summarized in the lower portion of
figure 2. These results assume n(t) >> i(t) to illustrate the maximum
errors to be expected. The rest of this section will discuss these
results in detail.

Theoretical Results

As shown in the appendix, the measurement error depends upon the
autocorrelation function, Rnn(T), of the pilot's noise and its relation
to the pilot's impulse response function (see sketch). As noted for
case III in figure 2, if the spectrum of the pilot noise is near white
noise, that is if Rnn(T) = O for all values of T greater than A, then

1As shown in the appendix, this is modified if Y, is a non-minimum
phase and the measurement has the constraint only to identify physically
realizable systems.
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Figure 2.- Measured describing functions using a time delay;
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the measurement error will be zero. This result appears to be significant
and has many far-reaching ramifications. The most important point is that
a system describing function, Yp(jm), can theoretically be measured with
the system excited only by the internal noise, n(t).

The measured describing function will be identical to the true describ-
ing function, but only if the special conditions noted in case III are met.
A more general condition is noted under case IV. Here, Rnn(T), the pilot's
injected noise described in terms of an autocorrelation function is assumed
to take the form Rpnp(T) = Ke™®!™! which would be narrow-band noise. This
form agrees quite well with some experimental measurements of the pilot's
remnant. For instance, this exponential form with o = 5 sec™1 agrees
with the measured n(t) in reference 7. The measurement error has been
derived and is shown in figure 2. These latter two cases will now be
illustrated by an experimental example.
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Simulation Results

To illustrate the theory presented in cases III and IV, the repre-
sentative control loop shown in the upper left of figure 3 was simulated,
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Figure 3.- Example using only internal disturbance; measurement
with cross-correlation method, 15 sec run length.

and identification measurements were made on the known system. For this
example, a representative pilot model and controlled element were as
follows: Y (jw) = 4e ©-3JdY) y.(jw) = (1/jw). These measurements were
made with nb external disturbance, i(t) = O, and the only excitation to
the system dynamics was the internal noise source, n(t). A time delay
of A = 0.2 sec was used. Two forms of the noise spectrum were con-
sidered: an n(t) with a spectrum which approximates white noise to
illustrate case III and Ry,(7) = e 51Tl to illustrate case IV.

For case III where n(t) is near white noise, the theory predicts
that the measurement will identify the known system, that is
Yp(jw) = L4e™©-3JY. Figure 3 presents the experimental results. The
measured amplitude of Yp(jw) is only +1 4B about the true value for
frequencies to about 9 rad/sec and the phase angle is only *5° about the
true value. These differences are helieved to be within the experimental
accuracies of the simulation. These results for case II1 then seem to
substantiate the theoretical conclusion that it is possible to measure
the describing function of a system which is excited by noise n(t)
introduced internally within the system.

-5l7l

For case IV, where Rnn(T) = e , theory predicts an error in the

measurement; that is,

T (0)= be 2% - 0.37(s0 + 4eT0:20N 02 (3)
Yb(jw) error



The simulation data in figure 3 for this case are again near the value
predicted above by the theory. We can see from this flgure the measured
value of the amplitude of the describing function Y (jw) differs from
the true value Yp(Jjw) in such a mamer as to produce too low a value
(about 4 dB below the true value) at the lower frequencies and tends to
give the appearance of lead (slope = 20 dB/decade) at the higher
frequencies. Actually, the measurement is tending toward -1/Y.(jw) as
predicted by the theory. The phase angle, however, agrees quite well
with the true value.

If a time delay were not used in this example, that is, if A = O,
then the measured describing function would be ¥ (jw) = -1/Y,(jw), as
shown by the cross-hatched line in figure 3. We can note that with
A =_0 the value of the constant factor in the error term for case IV is
e‘a% = 1. The value of this constant factor with A = 0.2, as shown in
equation (3), is —a% = 0.37. In comparing these values, we see that
using A = 0.2 resulted in approximately a 63% reduction in the magnitude
of the error term (only the phase is affected by the factor e-Ajw).
Also if A were nearer to the true value of Tp in this example, that
is, if A = 0.3 sec, then this would have resulted in e N = 0.22,
corresponding to a 78% reduction in the magnitude of the error term.

Applicetion

As we have just shown, using the time delay A will reduce the mea-
surement error due to the correlation of n(t) with e(t). Case IV above
indicates that A should be as large as possible in order to minimize
this error. However, A should not be much greater than Ty because then
the total messurement error will tend to increase. It appears from our
experience that A should be near the value of the pilot's effective time
delay, Tpe The pilot's effective time delay may be approximately known
in some situations (i.e., ref. 1) but, in general, its value will be
unknown and will depend upon the particular piloting task. One method of
estimating the pilot's effective time delay (thus selecting A) will be
illustrated later in the report.

In these previous examples, the measurement errors were near the
maximum to be expected since the system was excited only by the internal
noise source. The addition of external disturbances (ref. 2) will tend
to reduce the error in measurement. It is desirable, therefore, in
applications to analyze those portions of the flight test record which
have some external disturbances in order to insure the best possible
measurement of Yp.

FLIGHT TEST RESULTS FROM GEMINI X

Records taken during the Gemini flights are currently being analyzed
at Ames Research Center in order to measure the pilot describing function
during manned spacecraft operations. The following results, from Gemini X,
will include only one example of the flight data which serves to illustrate
the subject identification technigue. As noted previously, in selecting
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the flight test data to be analyzed it is important to select a section
of the record that contains the maximum number of external disturbances.
This was found to be the case during the retrofire maneuver where
external disturbances were introduced due to the unsymmetric ripple
firing of the 4 retro-rockets.

During retrofire the pilot is controlling the attitude about each
of the three axes. There is no control coupling between these axes and
the pilot appears to treat them as three separate tasks. Of the three
axes, the control about the yaw axis, shown in figure L, was found to

RETROFIRES

YAW ATTITUDE,
e(t), deg

CONTROLLER
DEFLECTION,
c(t), deg

-3 - [} [} [} 1 i | ' I | 1 |

Figure 4.- Time history of yaw control task during retrofire.

contain the best consistent correlation between attitude deviations,
e(t) and control stick deflections, c(t). These data for only the yaw
axis control will be used to illustrate the measurement of the pilot's
describing function during retrofire.

The Bode plots of the pilot describing function obtained by the
cross-correlation method for the data of figure U4 are presented in
figure 5. Curves of the magnitude, ‘Yp(jw)l, and phase angle,'in(jw),
are presented as a function of frequency for two values of A: A =0
and A = 0.7 sec. Also shown by the cross-hatched line is the Bode plot
for the negative inverse of the vehicle dynamics, -1/Yc(Jjw) (this line
represents only an approximation because Y. 1s not linear). The sig-
nificance of this line was noted previously. The theory, as shown in
the appendix, predicts that for A = O the measured describing function
Y,(jw) will tend toward -1/Yc(jw). It should not measure this exactly,
however, because of the external disturbancesﬁcaused by the retro-rockets.
These plots illustrate that for A =0, the Yp(jw) does tend toward
-1/Ye(jw) as compared with that for the measurement made with some posi-

tive value of A; in this case A = 0.7 sec.

Now in using this technique of measurement an important question
is, "what value for A should be used?" As noted previously A should

be near Tp- For these data the following procedure appears promising.
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Figure 5.- Effect of time delay using cross-correlation method;
yaw control during retrofire.

(1) Compute the Bode plot for a given value of A

(2) Select the transfer function that best fits the Bode plot (i.e.,
Yp(jw) = Ke"Tpd¥, etc.)

(3) Note the value of T, from (2)

These steps are repeated for several values of A 1in order to determine

a value of A that corresponds to Tp. This procedure is illustrated
in figure 6 for the yaw axis task. e estimated Tp from fairing
1Or S

.
o
T

e 0 CROSS-CORRELATION
e o ORTHOGONAL FILTERS

ESTIMATED 1,, sec

0 5 1.0
TIME DELAY, 2, sec

Figure 6.- Comparison of estimated time delay with A; yaw control
during retrofire.

through the Bode plots are presented as a function of A. Data are pre-

sented for both the orthogonal filters method and the cross-correlation
method. It is seen that the estimated A 1is equal to the time delay,
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Tp, &8t AN~ 0.7. Therefore, A\ = 0.7 was selected for use in this
identification analysis.

Figure 7 presents the Bode plots obtained by the cross-correlation
and orthogonal filter methods. The two measurements are given Iior

o 20 - ~——— CROSS—CORRELATION
S n ORTHOGONAL FILTERS
2o

S—10-

T2 —-
z<> ﬁ{/_)’\
< ol v = —

PHASE ANGLE,

'|5° [ ]
ol I 10
FREQUENCY, w, rad/sec

Figure 7.- Comparison of two identification methods for yaw control
task during retrofire; A = 0.7 sec.

comparison of these representative time-domain identification methods.
We see that there is good agreement between the methods below the fre-
quency of about 1 rad/sec. The maJjor differences appear at the high
frequencies. For these flight records there is very little input power
at frequencies above about 2 rad/sec so the data shown at frequencies
above this value probably have little significance.

The describing functions measured by both techniques, as shown in
figure 7, appear to represent a constant gain system with a time constant,
Tp> of about 0.7 sec. This result, although not directly comparable to
the results from previous studies, does appear reasonable. For instance,
with a rate command system as used in this control task, reference 1 has
shown that the pilot describing function will be essentially a constant
gain system with a pure time delay. Any difference in the gain (which
is lower for the flight data) and the time delay (which is higher for the
flight data) appears to be attributed to the fact that in this spacecraft
task the pilot is controlling about 3 separate axes whereas in reference 1
the pilot was controlling only about a single axis.

EFFECT OF TIME LAGS IN THE TOTAL CONTROL LOOP

Up to this point, we have assumed that Y.(Jjw) is minimun phase; for
instance, we have not included the effect of any transport lags in
Y.(jw). As shown in the appendix, any time delay, T, in Yo(Jjw) will
further tend to decrease the measurement error in Yp(jw). In particular,
the measurement error will theoretically be zero if
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R,(1) =0 for 7T>A+1g
where
A s o

This means that, in general, the meassurement error can be made small if
the autocorrelation function of the internal noise is negligible when T
is greater than the sum of all transport lags through the total control
loop, Te + Tp.

This approach to system identification, as developed in this paper,
indicates that the internal noise, n(t), need not be a hinderance to
identification; but, rather, it may possibly aid in the identification
and analysis of feedback control systems (if the conditions stated above
are met). This is an important point that may also have application in
many other fields (i.e., biology, economics, chemical processes) where
measurements can only be made with the noise introduced internally within
the system to be measured.

CONCLUDING REMARKS

This paper has shown that in measuring pilot describing functions,
the measurement error due to the correlation of the input error signal
with the pilot's output noise can be reduced by shifting the input data
during the computer analysis. The value for this time shift should be
near the effective time delay of the pilot. It is shown that this mea-
surement error can be made small if the autocorrelation function, Rpn(T),
of the internal noise source is negligible for T greater than the sum
of all transport lags through the control loop. This means that if these
conditions are met, it is conceivable to measure the describing function
of a system with feedback using only its own internal noise source for
excitation.

Representative data from the retrofire portions of the Gemini X
flight demonstrate the feasibility of measuring the pilot's describing
function dQuring normal spacecraft operation. Although these data gener-
ally agree with previous simulator results, additional piloted simulator
data which more accurately duplicate the actual flight control task should
be obtained for comparison with future measurements of the pilot describ-
ing function during spacecraft operation.
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APPENDIX
ERRORS IN IDENTIFICATION WITH OPEN-LOOP METHODS

This appendix considers the open-loop measurement error due to the
correlation of e(t) with n(t) when the identification method is con-
strained to be physically realizable. Time-domain methods such as cross-
correlation (refs. 2 and 3), orthogonal filters (refs. 2 and 4), and
parameter trackers (refs. 2 and 5) are examples in this category.

With the constraint equation (1) of the text becomes

() = - (A1)

Pee(Jw)

where

_— + 2 .
Oee(W) = 8o (Jw) Oy (Jw)

®ge(jw) has no poles or zeros in the RHP

Pee (Jw) has no poles or zeros in the LHP

1, has no poles in the RHP

This follows the usual solution (ref. 8) to the Wiener-Hopf equation
which allows only a physically realizable system. That is, Yp(jw) is con-
strained to have no poles in the RHP (right half of the real vs. imaginary
plane) .

Substituting the individual terms for dec(Jw) we have

%) - [¥p(30) ae (39) 14 + [Gen(30)/0ge(dw) 1y (x2)

03 (Jw)

Now we introduce the important feature of delaying e(t) by an amount
A as illustrated in figure 2. The estimated transfer function can then
be written:

A3 * . . _?\. _)\. . _ .
?{p(jm) e 7\Jw[e7\Jwa(Jw) d>;e(Jw)]+++ e MV, (Jw)/ 85 (J0) ], )
Pee(gw)

To simplify the following discussion let us asgsume that ANST where
Tp 18 a pure time delay in Yp(jw). Then since ewaYp(jw) is physically
realizable

13




e MM e, (3u)/85e (501,

(Ak)
0o (Jw)

Yo = Yp(go) +

The term ¢po(w) is made up of contributions from two sources; i(t) and
n(t). The maximum error can be determined by assuming i(t) = O (ref. 2).
With this assumption and using basic closed-loop relationships let us
define

N ) o ( 3w
1+ YpYe(jw)
oo (50) = -Yc(-Jw)¢nn(Jw) (46)
1l + Ych(-jw)
) (w) & (5w
0up (Ju) = -Yo (= gw) @p (Jw) G (Jw) (A7)

1+ YpYe(-jw)

These definitions for ¢ge(jw) and g (Jjw), which assume certain pole and
zerc locations in the RHP and LHP, will hold for most practical control
situations except if Yc(jw) is a non-minimum phase (i.e., contains a
time delay or zeros in RHP). A case in which Y. is a non-minimum phase
will be illustrated at the end of this appendix.

Y. Minimum Phase

Using the foregoing assumptions, which cover a broad variety of piloted
control situations, we arrive at

Yo (gw) = ¥ (gw) -

G (30) 1, [ 1

& (3) Ye(3o) Yp(jw)] (49)

where [exjm¢hn(jw)]+ is evaluated as Ju(t)Ryy(t +A), in which u is the unit

step function, and Rnn(T) is the autocorrelation function of the noise,
n(t). The above means that the Fourier transform is only evaluated for
T greater than A\.

Equation (A8) gives the result we were after. For instance, note
from this equation that if A is positive and if n(t) is white noise
(Rpp(7) is an impuise at T = O), then [ekamgn(jw)]+ is evaluated as
zero and there will be no error in identification. The general requirement
for the measurement error to be zero is that Rp,(7) = 0 for T >A.

Let us further look at a more general form for n(t) and let
Ron(T) = Ke=@l7l  and we obtain
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§p(jw) = Yy (Jw) - e~ax{§gf%57 + Yp(jw)] e N (A9)

This shows that the error term on the right side of the equation is a
function of the magnitude of the constant factor e~0A, As A increases
and if o is large (near white noise), then Y (jw) =~ Y, (jw). Conversely,
if A = O then the result is identical to that shown in reference 2;

Yo (dw) = [-1/¥c(gw)]

With Time Delay in Y,

Any pure time delay, Te, in Ye(Jjw) will further reduce the measurement
error. This can be shown by noting that T, does not affect the previous
definition of @y (w) (®e(w) is not imaginary) but it will appear in the
definition of cbn(gw The resulting form for equation (A8) with a time
delay, T,, in Y (jw) is

R e—?\jw[ (}\"'Tc)Jw%n( )J L
T, (gw) = Yp(gw) - 7 (0 [Yc(jw) + Yp(jw)] (A10)

C

It is interesting to note that in this case if Rpn(T) = O for
T > Te ‘then Y (jw) does not have to have a time delay (and no time
delay, A, is requlred in the analy51s) in order to have zero measurement
error.
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